to thank FAPESP (proc. 91/2890-2) for a scholarship, the Weizemann Institute of Science for providing X-ray facilities and Dr F. Frolow for the data collection.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55753 (12 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: L11029]

References

- Bonati, F. & Bovio, B. (1990). J. Crystallogr. Spectrosc. Res. 20, 233-244.
- Caracelli, I., Zukerman-Schpector, J., Barreiro, E. J. & Freitas, A. C. C. (1993). Acta Cryst. C49, 633-635.
- DEF (1991). Dicionario de Especialidades Farmaceuticas (1991-1992). Editora de Publicações Científicas Ltda., São Paulo, Brazil.
- Freitas, A. C. C. (1991). PhD thesis. Univ. Federal do Rio de Janeiro, RJ, Brazil.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
- Stevens, G. de (1963). Diuretics, Chemistry and Pharmacology, pp. 47-80. New York: Academic Press.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1993). C49, 1017-1018

Manchester M60 1QD, England

Triphenylphosphonium Bromide

(Received 28 July 1992; accepted 10 December 1992)

N. BRICKLEBANK, S. M. GODFREY, C. A. MCAULIFFE

Department of Chemistry, University of Manchester Institute of Science and Technology, PO Box 88,

Zukerman-Schpector, J., Castellano, E. E., Oliva, G., Massabni, A. C. & Pinto, A. D. (1984). Can. J. Chem. 62, 725-728. 54, 1968-1973] indicates a much greater cation-anion interaction, analogous to molecular Ph₃PBr₂ [Bricklebank, Godfrey, McAuliffe, Mackie & Pritchard (1992). J. Chem. Soc. Chem. Commun. pp. 355-356], which has a novel four-coordinate spoke structure with significant covalent Br-Br interaction.

Comment

The phosphonium salt reported here is an example of the type of product which can be expected if the anhydrous anaerobic conditions required for reacting metal powders with dihalophosphoranes are not rigorously maintained. The formation of triphenylphosphonium halides from triphenyldihalophosphanes in moist solvents has been reported previously (Beveridge, Harris & Payne, 1966). The title compound was isolated from the filtrate of the reaction of Ph₃PBr₂ with Crmetal powder, which had been penetrated by moisture (Godfrey, Kelly, McAuliffe, Mackie, Matear & Pritchard, 1991). Despite their ubiquity, the only triphenylphosphonium halide structure reported to date is that of (2-hydroxyphenyl)diphenylphosphonium bromide (Schmutzler, Schomburg, Bartsch & Stelzer, 1984). The presence of the hydroxy substituent in this compound involves the P-H group in hydrogen bonding, which is impossible in the title compound.

Fig. 1. The title molecule, including atomic numbering scheme, drawn using ORTEPII (Johnson, 1976).

Experimental

Crystal data	
$C_{18}H_{16}P^{+}.Br^{-}$	Mo $K\alpha$ radiation
$M_r = 343.2$	$\lambda = 0.7107 \text{ Å}$
Orthorhombic	Cell parameters from 25
Pnma	reflections
a = 10.951 (5) Å	$\theta = 10.42 - 24.52^{\circ}$
b = 12.269 (3) Å	$\mu = 2.66 \text{ mm}^{-1}$
c = 11.754 (4) Å	T = 296 K
$V = 1579 (1) Å^3$	Trapezoid
Z = 4	$0.30 \times 0.20 \times 0.20$ mm
$D_r = 1.443 \text{ Mg m}^{-3}$	Colourless

0108-2701/93/051017-02\$06.00

AND R. G. PRITCHARD

The structure consists of unique $[C_{18}H_{15}PH]^+Br^-$ ion pairs, which are bisected by a crystallographic mirror plane. The proton is bonded to the P atom [P--H 1.61 (9) Å] and is directed towards a Br anion $[P \cdots Br 2.20 (9) Å]$. Although the structure is ionic, comparison with phosphonium bromide $[PH_4^+.Br^-, P \cdots Br$ 4.029 (4) Å; Schröder & Rush (1971). J. Chem. Phys.

2\$06.00 © 1993 International Union of Crystallography

1017

Data collection

CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: refined from ΔF (DI-FABS; Walker & Stuart, 1983) $T_{\min} = 0.60, T_{\max} = 1.19$ 1477 measured reflections 1456 independent reflections 676 observed reflections $[I > 2\sigma(I)]$

Refinement

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.0109$
Final $R = 0.0520$	$\Delta \rho_{\rm max} = 0.48 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.0562	$\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.278	Extinction correction:
676 reflections	Zachariasen type 2 Gaus-
100 parameters	sian isotropic
H atoms in calculated po- sitions except for H at-	Extinction coefficient: 1.88209×10^{-7}
tached to P which was lo-	Atomic scattering factors
cated in a difference map	from International Tables
and refined isotropically	for X-ray Crystallography
$w = 1/\sigma^2(F_o)$	(1974, Vol. IV)

 $R_{\rm int} = 0.024$

 $\theta_{\rm max} = 24.0^{\circ}$

 $h = 0 \rightarrow 13$

 $k = 0 \rightarrow 14$

 $l = 0 \rightarrow 12$

3 standard reflections

reflections

none

monitored every 150

intensity variation:

Data collection: Enraf-Nonius CAD-4AJ. Cell refinement: Enraf-Nonius CAD-4AJ. Data reduction: TEXSAN PROCESS (Molecular Structure Corporation, 1985). Program(s) used to solve structure: MITHRIL (Gilmore, 1984). Program(s) used to refine structure: TEXSAN LS (Molecular Structure Corporation, 1985). Software used to prepare material for publication: TEXSAN FINISH (Molecular Structure Corporation, 1985).

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (\dot{A}^2)

$U_{\text{eq}} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$					
	x	y	z	$U_{\rm eq}$	
Br1	0.5091(1)	0.2500	-0.04161 (10)	0.0655	
P1	0.3820 (3)	0.2500	0.2597 (3)	0.0640	
C 1	0.4723 (9)	0.2500	0.3880(11)	0.0550	
C2	0.5106 (9)	0.1552 (8)	0.4334 (9)	0.0957	
C3	0.5831 (11)	0.1551 (9)	0.5297 (11)	0.1107	
C4	0.6163 (13)	0.2500	0.5764 (11)	0.0984	
C5	0.2946 (7)	0.1274 (7)	0.2525 (8)	0.0568	
C6	0.2107 (8)	0.1033 (8)	0.3387 (9)	0.0634	
C7	0.1508 (8)	0.0044 (9)	0.3330 (8)	0.0674	
C8	0.1696 (10)	-0.0691 (8)	0.2484 (10)	0.0860	
C9	0.2551 (11)	-0.0446 (11)	0.1651 (11)	0.0989	
C10	0 3167 (9)	0.0541 (11)	0 1669 (9)	0.0825	

Table 2. Geometric parameters (Å, °)

P1C1	1.80(1)	C5-C10	1.37 (1)
P1C5	1.785 (8)	C6—C7	1.38 (1)
C1-C2	1.35(1)	C7—C8	1.36(1)
C2—C3	1.38 (1)	C8C9	1.39 (2)
C3-C4	1.34 (1)	C9-C10	1.39 (2)
C5—C6	1.40 (1)		
C1-P1-C5	109.5 (4)	P1-C5-C6	119.8 (7)
C5-P1-C5 ⁱ	114.8 (5)	P1-C5-C10	119.5 (7)
P1-C1-C2	120.1 (6)		

Symmetry code: (i) $x, \frac{1}{2} - y, z$.

0108-2701/93/051018-05\$06.00

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55968 (16 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HA1023]

References

- Beveridge, A. D., Harris, G. S. & Payne, D. S. (1966). J. Chem. Soc. A, pp. 726-727.
- Bricklebank, N., Godfrey, S. M., McAuliffe, C. A., Mackie, A. G. & Pritchard, R. G. (1992). J. Chem. Soc. Chem. Commun. pp. 355-356. Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
- Godfrey, S. M., Kelly, D. G., McAuliffe, C. A., Mackie, A. G., Matear, P. P. & Pritchard, R. G. (1991). J. Chem. Soc. Chem. Commun. pp. 1447-1449.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package, MSC, 3200A Research Forest Drive, The Woodlands, TX 77381, USA.
- Schmutzler, R., Schomburg, D., Bartsch, R. & Stelzer, O. (1984). Z. Naturforsch. Teil B, 39, 1177-1184.
- Schröder, L. W. & Rush, J. J. (1971). J. Chem. Phys. 54, 1968-1973. Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1993). C49, 1018–1022

Structures of Two Ribonucleotide Reductase Inhibitors: 1-Hydroxy-1-methylurea and 1-Hydroxy-3-methylurea

BETTINA BRYDE NIELSEN, KARLA FRYDENVANG AND INGRID KJØLLER LARSEN

Department of Organic Chemistry, Royal Danish School of Pharmacy, DK-2100 Copenhagen, Denmark

(Received 15 September 1992; accepted 27 November 1992)

Abstract

The conformation of O-N-C=O in both 1-hydroxy-1-methylurea and 1-hydroxy-3-methylurea is antiperiplanar and is stabilized by intramolecular NH···O hydrogen bonding. Pyramidalization of the N atom carrying the hydroxy group is observed in both compounds and the N-O bonds are twisted by about 17° out of the N-(C=O)-N urea planes. The methyl C atom of 1hydroxy-1-methylurea is not situated in the urea plane but the corresponding atom in 1-hydroxy-3-methylurea is included in the plane. 1-Hydroxy-3-methylurea is consequently the more planar of the two compounds.

© 1993 International Union of Crystallography